Перевод: со всех языков на все языки

со всех языков на все языки

A History of the Stationary Steam Engine

  • 1 Adamson, Daniel

    [br]
    b. 1818 Shildon, Co. Durham, England
    d. January 1890 Didsbury, Manchester, England
    [br]
    English mechanical engineer, pioneer in the use of steel for boilers, which enabled higher pressures to be introduced; pioneer in the use of triple-and quadruple-expansion mill engines.
    [br]
    Adamson was apprenticed between 1835 and 1841 to Timothy Hackworth, then Locomotive Superintendent on the Stockton \& Darlington Railway. After this he was appointed Draughtsman, then Superintendent Engineer, at that railway's locomotive works until in 1847 he became Manager of Shildon Works. In 1850 he resigned and moved to act as General Manager of Heaton Foundry, Stockport. In the following year he commenced business on his own at Newton Moor Iron Works near Manchester, where he built up his business as an iron-founder and boilermaker. By 1872 this works had become too small and he moved to a 4 acre (1.6 hectare) site at Hyde Junction, Dukinfield. There he employed 600 men making steel boilers, heavy machinery including mill engines fitted with the American Wheelock valve gear, hydraulic plant and general millwrighting. His success was based on his early recognition of the importance of using high-pressure steam and steel instead of wrought iron. In 1852 he patented his type of flanged seam for the firetubes of Lancashire boilers, which prevented these tubes cracking through expansion. In 1862 he patented the fabrication of boilers by drilling rivet holes instead of punching them and also by drilling the holes through two plates held together in their assembly positions. He had started to use steel for some boilers he made for railway locomotives in 1857, and in 1860, only four years after Bessemer's patent, he built six mill engine boilers from steel for Platt Bros, Oldham. He solved the problems of using this new material, and by his death had made c.2,800 steel boilers with pressures up to 250 psi (17.6 kg/cm2).
    He was a pioneer in the general introduction of steel and in 1863–4 was a partner in establishing the Yorkshire Iron and Steel Works at Penistone. This was the first works to depend entirely upon Bessemer steel for engineering purposes and was later sold at a large profit to Charles Cammell \& Co., Sheffield. When he started this works, he also patented improvements both to the Bessemer converters and to the engines which provided their blast. In 1870 he helped to turn Lincolnshire into an important ironmaking area by erecting the North Lincolnshire Ironworks. He was also a shareholder in ironworks in South Wales and Cumberland.
    He contributed to the development of the stationary steam engine, for as early as 1855 he built one to run with a pressure of 150 psi (10.5 kg/cm) that worked quite satisfactorily. He reheated the steam between the cylinders of compound engines and then in 1861–2 patented a triple-expansion engine, followed in 1873 by a quadruple-expansion one to further economize steam. In 1858 he developed improved machinery for testing tensile strength and compressive resistance of materials, and in the same year patents for hydraulic lifting jacks and riveting machines were obtained.
    He was a founding member of the Iron and Steel Institute and became its President in 1888 when it visited Manchester. The previous year he had been President of the Institution of Civil Engineers when he was presented with the Bessemer Gold Medal. He was a constant contributor at the meetings of these associations as well as those of the Institution of Mechanical Engineers. He did not live to see the opening of one of his final achievements, the Manchester Ship Canal. He was the one man who, by his indomitable energy and skill at public speaking, roused the enthusiasm of the people in Manchester for this project and he made it a really practical proposition in the face of strong opposition.
    [br]
    Principal Honours and Distinctions
    President, Institution of Civil Engineers 1887.
    President, Iron and Steel Institute 1888. Institution of Civil Engineers Bessemer Gold Medal 1887.
    Further Reading
    Obituary, Engineer 69:56.
    Obituary, Engineering 49:66–8.
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (provides an illustration of Adamson's flanged seam for boilers).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (covers the development of the triple-expansion engine).
    RLH

    Biographical history of technology > Adamson, Daniel

  • 2 Stumpf, Johann

    [br]
    fl. c. 1900 Germany
    [br]
    German inventor of a successful design of uniflow steam engine.
    [br]
    In 1869 Stumpf was commissioned by the Pope Manufacturing Company of Hertford, Connecticut, to set up two triple-expansion, vertical, Corliss pumping engines. He tried to simplify this complicated system and started research with the internal combustion engine and the steam turbine particularly as his models. The construction of steam turbines in several stages where the steam passed through in a unidirectional flow was being pursued at that time, and Stumpf wondered whether it would be possible to raise the efficiency of a reciprocating steam engine to the same thermal level as the turbine by the use of the uniflow principle.
    Stumpf began to investigate these principles without studying the work of earlier pioneers like L.J. Todd, which he later thought would have led him astray. It was not until 1908, when he was Professor at the Institute of Technology in Berlin- Charlottenburg, that he patented his successful "una-flow" steam engine. In that year he took out six British patents for improvements in details on his original one Stumpf fully realized the thermal advantages of compressing the residual steam and was able to evolve systems of coping with excessive compression when starting. He also placed steam-jackets around the ends of the cylinder. Stumpf's first engine was built in 1908 by the Erste B runner Maschinenfabrik-Gesellschaft, and licences were taken out by many other manufacturers, including those in Britain and the USA. His engine was developed into the most economical type of reciprocating steam engine.
    [br]
    Bibliography
    1912, The Una-Flow Steam Engine, Munich: R. Oldenbourg (his own account of the una-flow engine).
    Further Reading
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press; R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (both discuss Stumpf's engine).
    H.J.Braun, "The National Association of German-American Technologists and technology transfer between Germany and the United States, 1844–1930", History of Technology 8 (provides details of Stumpf's earlier work).
    RLH

    Biographical history of technology > Stumpf, Johann

  • 3 Savery, Thomas

    [br]
    b. c. 1650 probably Shilston, near Modbury, Devonshire, England
    d. c. 15 May 1715 London, England
    [br]
    English inventor of a partially successful steam-driven pump for raising water.
    [br]
    Little is known of the early years of Savery's life and no trace has been found that he served in the Army, so the title "Captain" is thought to refer to some mining appointment, probably in the West of England. He may have been involved in the Glorious Revolution of 1688, for later he was well known to William of Orange. From 1705 to 1714 he was Treasurer for Sick and Wounded Seamen, and in 1714 he was appointed Surveyor of the Water Works at Hampton Court, a post he held until his death the following year. He was interested in mechanical devices; amongst his early contrivances was a clock.
    He was the most prolific inventor of his day, applying for seven patents, including one in 1649, for polishing plate glass which may have been used. His idea for 1697 for propelling ships with paddle-wheels driven by a capstan was a failure, although regarded highly by the King, and was published in his first book, Navigation Improved (1698). He tried to patent a new type of floating mill in 1707, and an idea in 1710 for baking sea coal or other fuel in an oven to make it clean and pure.
    His most famous invention, however, was the one patented in 1698 "for raising water by the impellent force of fire" that Savery said would drain mines or low-lying land, raise water to supply towns or houses, and provide a source of water for turning mills through a water-wheel. Basically it consisted of a receiver which was first filled with steam and then cooled to create a vacuum by having water poured over the outside. The water to be pumped was drawn into the receiver from a lower sump, and then high-pressure steam was readmitted to force the water up a pipe to a higher level. It was demonstrated to the King and the Royal Society and achieved some success, for a few were installed in the London area and a manufactory set up at Salisbury Court in London. He published a book, The Miner's Friend, about his engine in 1702, but although he made considerable improvements, due to excessive fuel consumption and materials which could not withstand the steam pressures involved, no engines were installed in mines as Savery had hoped. His patent was extended in 1699 until 1733 so that it covered the atmospheric engine of Thomas Newcomen who was forced to join Savery and his other partners to construct this much more practical engine.
    [br]
    Principal Honours and Distinctions
    FRS 1706.
    Bibliography
    1698, Navigation Improved.
    1702, The Miner's Friend.
    Further Reading
    The entry in the Dictionary of National Biography (1897, Vol. L, London: Smith Elder \& Co.) has been partially superseded by more recent research. The Transactions of the Newcomen Society contain various papers; for example, Rhys Jenkins, 1922–3, "Savery, Newcomen and the early history of the steam engine", Vol. 3; A.Stowers, 1961–2, "Thomas Newcomen's first steam engine 250 years ago and the initial development of steam power", Vol. 34; A.Smith, 1977–8, "Steam and the city: the committee of proprietors of the invention for raising water by fire", 1715–1735, Vol. 49; and J.S.P.Buckland, 1977–8, "Thomas Savery, his steam engine workshop of 1702", Vol. 49. Brief accounts may be found in H.W. Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press, and R.L. Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press. There is another biography in T.I. Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C.Black.
    RLH

    Biographical history of technology > Savery, Thomas

  • 4 Hornblower, Jonathan

    [br]
    b. 1753 Cornwall (?), England
    d. 1815 Penryn, Cornwall, England
    [br]
    English mining engineer who patented an early form of compound steam engine.
    [br]
    Jonathan came from a family with an engineering tradition: his grandfather Joseph had worked under Thomas Newcomen. Jonathan was the sixth child in a family of thirteen whose names all began with "J". In 1781 he was living at Penryn, Cornwall and described himself as a plumber, brazier and engineer. As early as 1776, when he wished to amuse himself by making a small st-eam engine, he wanted to make something new and wondered if the steam would perform more than one operation in an engine. This was the foundation for his compound engine. He worked on engines in Cornwall, and in 1778 was Engineer at the Ting Tang mine where he helped Boulton \& Watt erect one of their engines. He was granted a patent in 1781 and in that year tried a large-scale experiment by connecting together two engines at Wheal Maid. Very soon John Winwood, a partner in a firm of iron founders at Bristol, acquired a share in the patent, and in 1782 an engine was erected in a colliery at Radstock, Somerset. This was probably not very successful, but a second was erected in the same area. Hornblower claimed greater economy from his engines, but steam pressures at that time were not high enough to produce really efficient compound engines. Between 1790 and 1794 ten engines with his two-cylinder arrangement were erected in Cornwall, and this threatened Boulton \& Watt's near monopoly. At first the steam was condensed by a surface condenser in the bottom of the second, larger cylinder, but this did not prove very successful and later a water jet was used. Although Boulton \& Watt proceeded against the owners of these engines for infringement of their patent, they did not take Jonathan Hornblower to court. He tried a method of packing the piston rod by a steam gland in 1781 and his work as an engineer must have been quite successful, for he left a considerable fortune on his death.
    [br]
    Bibliography
    1781, British patent no. 1,298 (compound steam engine).
    Further Reading
    R.Jenkins, 1979–80, "Jonathan Hornblower and the compound engine", Transactions of the Newcomen Society 11.
    J.Tann, 1979–80, "Mr Hornblower and his crew, steam engine pirates in the late 18th century", Transactions of the Newcomen Society 51.
    J.Farey, 1827, A Treatise on the Steam Engine, Historical, Practical and Descriptive, reprinted 1971, Newton Abbot: David \& Charles (an almost contemporary account of the compound engine).
    D.S.L.Cardwell, 1971, From Watt to Clausius. The Rise of Thermo dynamics in the Early Industrial Age, London: Heinemann.
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press.
    RLH

    Biographical history of technology > Hornblower, Jonathan

  • 5 Todd, Leonard Jennett

    [br]
    fl. 1885 London, England
    [br]
    English (?) patentee of steam engines incorporating the uniflow principle.
    [br]
    In a uniflow system, the steam enters a steam engine cylinder at one end, pushes the pistons along, and exhausts through a ring of ports at the centre of the cylinder that are uncovered by movement of the piston. The piston is returned by steam then entering the other end of the cylinder, moving the piston arrangement back, and again making its exit through the central ports. This gave the thermodynamic advantage of the cylinder ends remaining hot and the centre colder with reheating the ends of the cylinder through compression of the residual steam. The principle was first patented by Jacob Perkins in England in 1827 and was tried in America in 1856.
    Little is known about Todd. The addresses given in his patent specifications show that he was living first at South Hornsey and then Stoke Newington, both in Middlesex (now in London). No obituary notices have been traced. He took out a patent in 1885 for a "terminal exhaust engine" and followed this with two more in 1886 and 1887. His aim was to "produce a double acting steam engine which shall work more efficiently, which shall produce and maintain within itself an improved gradation of temperature extending from each of its two Hot Inlets to its common central Cold Outlet". His later patents show the problems he faced with finding suitable valve gears and the compression developing during the return stroke of the piston. It was this last problem, particularly when starting a condensing engine, that probably defeated him through excessive compression pressures. There is some evidence that he hoped to apply his engines to railway locomotives.
    [br]
    Bibliography
    1885, British patent no. 7,301 (terminal exhaust engine). 1886, British patent no. 2,132.
    1887, British patent no. 6,666.
    Further Reading
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (provides the fullest discussion of his patents). H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press.
    J.Stumpf, 1912, The Una-Flow Steam Engine, Munich: R.Oldenbourg.
    RLH

    Biographical history of technology > Todd, Leonard Jennett

  • 6 Elder, John

    [br]
    b. 9 March 1824 Glasgow, Scotland
    d. 17 September 1869 London, England
    [br]
    Scottish engineer who introduced the compound steam engine to ships and established an important shipbuilding company in Glasgow.
    [br]
    John was the third son of David Elder. The father came from a family of millwrights and moved to Glasgow where he worked for the well-known shipbuilding firm of Napier's and was involved with improving marine engines. John was educated at Glasgow High School and then for a while at the Department of Civil Engineering at Glasgow University, where he showed great aptitude for mathematics and drawing. He spent five years as an apprentice under Robert Napier followed by two short periods of activity as a pattern-maker first and then a draughtsman in England. He returned to Scotland in 1849 to become Chief Draughtsman to Napier, but in 1852 he left to become a partner with the Glasgow general engineering company of Randolph Elliott \& Co. Shortly after his induction (at the age of 28), the engineering firm was renamed Randolph Elder \& Co.; in 1868, when the partnership expired, it became known as John Elder \& Co. From the outset Elder, with his partner, Charles Randolph, approached mechanical (especially heat) engineering in a rigorous manner. Their knowledge and understanding of entropy ensured that engine design was not a hit-and-miss affair, but one governed by recognition of the importance of the new kinetic theory of heat and with it a proper understanding of thermodynamic principles, and by systematic development. In this Elder was joined by W.J.M. Rankine, Professor of Civil Engineering and Mechanics at Glasgow University, who helped him develop the compound marine engine. Elder and Randolph built up a series of patents, which guaranteed their company's commercial success and enabled them for a while to be the sole suppliers of compound steam reciprocating machinery. Their first such engine at sea was fitted in 1854 on the SS Brandon for the Limerick Steamship Company; the ship showed an improved performance by using a third less coal, which he was able to reduce still further on later designs.
    Elder developed steam jacketing and recognized that, with higher pressures, triple-expansion types would be even more economical. In 1862 he patented a design of quadruple-expansion engine with reheat between cylinders and advocated the importance of balancing reciprocating parts. The effect of his improvements was to greatly reduce fuel consumption so that long sea voyages became an economic reality.
    His yard soon reached dimensions then unequalled on the Clyde where he employed over 4,000 workers; Elder also was always interested in the social welfare of his labour force. In 1860 the engine shops were moved to the Govan Old Shipyard, and again in 1864 to the Fairfield Shipyard, about 1 mile (1.6 km) west on the south bank of the Clyde. At Fairfield, shipbuilding was commenced, and with the patents for compounding secure, much business was placed for many years by shipowners serving long-distance trades such as South America; the Pacific Steam Navigation Company took up his ideas for their ships. In later years the yard became known as the Fairfield Shipbuilding and Engineering Company Ltd, but it remains today as one of Britain's most efficient shipyards and is known now as Kvaerner Govan Ltd.
    In 1869, at the age of only 45, John Elder was unanimously elected President of the Institution of Engineers and Shipbuilders in Scotland; however, before taking office and giving his eagerly awaited presidential address, he died in London from liver disease. A large multitude attended his funeral and all the engineering shops were silent as his body, which had been brought back from London to Glasgow, was carried to its resting place. In 1857 Elder had married Isabella Ure, and on his death he left her a considerable fortune, which she used generously for Govan, for Glasgow and especially the University. In 1883 she endowed the world's first Chair of Naval Architecture at the University of Glasgow, an act which was reciprocated in 1901 when the University awarded her an LLD on the occasion of its 450th anniversary.
    [br]
    Principal Honours and Distinctions
    President, Institution of Engineers and Shipbuilders in Scotland 1869.
    Further Reading
    Obituary, 1869, Engineer 28.
    1889, The Dictionary of National Biography, London: Smith Elder \& Co. W.J.Macquorn Rankine, 1871, "Sketch of the life of John Elder" Transactions of the
    Institution of Engineers and Shipbuilders in Scotland.
    Maclehose, 1886, Memoirs and Portraits of a Hundred Glasgow Men.
    The Fairfield Shipbuilding and Engineering Works, 1909, London: Offices of Engineering.
    P.M.Walker, 1984, Song of the Clyde, A History of Clyde Shipbuilding, Cambridge: PSL.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge: Cambridge University Press (covers Elder's contribution to the development of steam engines).
    RLH / FMW

    Biographical history of technology > Elder, John

  • 7 Porter, Charles Talbot

    [br]
    b. 18 January 1826 Auburn, New York, USA
    d. 1910 USA
    [br]
    American inventor of a stone dressing machine, an improved centrifugal governor and a high-speed steam engine.
    [br]
    Porter graduated from Hamilton College, New York, in 1845, read law in his father's office, and in the autumn of 1847 was admitted to the Bar. He practised for six or seven years in Rochester, New York, and then in New York City. He was drawn into engineering when aged about 30, first through a client who claimed to have invented a revolutionary type of engine and offered Porter the rights to it as payment of a debt. Having lent more money, Porter saw neither the man nor the engine again. Porter followed this with a similar experience over a patent for a stone dressing machine, except this time the machine was built. It proved to be a failure, but Porter set about redesigning it and found that it was vastly improved when it ran faster. His improved machine went into production. It was while trying to get the steam engine that drove the stone dressing machine to run more smoothly that he made a discovery that formed the basis for his subsequent work.
    Porter took the ordinary Watt centrifugal governor and increased the speed by a factor of about ten; although he had to reduce the size of the weights, he gained a motion that was powerful. To make the device sufficiently responsive at the right speed, he balanced the centrifugal forces by a counterweight. This prevented the weights flying outwards until the optimum speed was reached, so that the steam valves remained fully open until that point and then the weights reacted more quickly to variations in speed. He took out a patent in 1858, and its importance was quickly recognized. At first he manufactured and sold the governors himself in a specially equipped factory, because this was the only way he felt he could get sufficient accuracy to ensure a perfect action. For marine use, the counterweight was replaced by a spring.
    Higher speed had brought the advantage of smoother running and so he thought that the same principles could be applied to the steam engine itself, but it was to take extensive design modifications over several years before his vision was realized. In the winter of 1860–1, J.F. Allen met Porter and sketched out his idea of a new type of steam inlet valve. Porter saw the potential of this for his high-speed engine and Allen took out patents for it in 1862. The valves were driven by a new valve gear designed by Pius Fink. Porter decided to display his engine at the International Exhibition in London in 1862, but it had to be assembled on site because the parts were finished in America only just in time to be shipped to meet the deadline. Running at 150 rpm, the engine caused a sensation, but as it was non-condensing there were few orders. Porter added condensing apparatus and, after the failure of Ormerod Grierson \& Co., entered into an agreement with Joseph Whitworth to build the engines. Four were exhibited at the 1867 Paris Exposition Universelle, but Whitworth and Porter fell out and in 1868 Porter returned to America.
    Porter established another factory to build his engine in America, but he ran into all sorts of difficulties, both mechanical and financial. Some engines were built, and serious production was started c. 1874, but again there were further problems and Porter had to leave his firm. High-speed engines based on his designs continued to be made until after 1907 by the Southwark Foundry and Machine Company, Philadelphia, so Porter's ideas were proved viable and led to many other high-speed designs.
    [br]
    Bibliography
    1908, Engineering Reminiscences, New York: J. Wiley \& Sons; reprinted 1985, Bradley, Ill.: Lindsay (autobiography; the main source of information about his life).
    Further Reading
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (examines his governor and steam engine).
    O.Mayr, 1974, "Yankee practice and engineering theory; Charles T.Porter and the dynamics of the high-speed engine", Technology and Culture 16 (4) (examines his governor and steam engine).
    RLH

    Biographical history of technology > Porter, Charles Talbot

  • 8 Reynolds, Edwin

    [br]
    b. 1831 Mansfield, Connecticut, USA
    d. 1909 Milwaukee, Wisconsin, USA
    [br]
    American contributor to the development of the Corliss valve steam engine, including the "Manhattan" layout.
    [br]
    Edwin Reynolds grew up at a time when formal engineering education in America was almost unavailable, but through his genius and his experience working under such masters as G.H. Corliss and William Wright, he developed into one of the best mechanical engineers in the country. When he was Plant Superintendent for the Corliss Steam Engine Company, he built the giant Corliss valve steam engine displayed at the 1876 Centennial Exhibition. In July 1877 he left the Corliss Steam Engine Company to join Edward Allis at his Reliance Works, although he was offered a lower salary. In 1861 Allis had moved his business to the Menomonee Valley, where he had the largest foundry in the area. Immediately on his arrival with Allis, Reynolds began desig-ning and building the "Reliance-Corliss" engine, which becamea symbol of simplicity, economy and reliability. By early 1878 the new engine was so successful that the firm had a six-month backlog of orders. In 1888 he built the first triple-expansion waterworks-pumping engine in the United States for the city of Milwaukee, and in the same year he patented a new design of blowing engine for blast furnaces. He followed this in March 1892 with the first steam engine sets coupled directly to electric generators when Allis-Chalmers contracted to build two Corliss cross-compound engines for the Narragansett Light Company of Providence, Rhode Island. In 1893, one of the impressive attractions at the World's Columbian Exposition in Chicago was the 3,000 hp (2,200 kW) quadruple-expansion Reynolds-Corliss engine designed by Reynolds, who continued to make significant improvements and gained worldwide recognition of his outstanding achievements in engine building.
    Reynolds was asked to go to New York in 1898 for consultation about some high-horsepower engines for the Manhattan transport system. There, 225 railway locomotives were to be replaced by electric trains, which would be supplied from one generating station producing 60,000 hp (45,000 kW). Reynolds sketched out his ideas for 10,000 hp (7,500 kW) engines while on the train. Because space was limited, he suggested a four-cylinder design with two horizontal-high-pressure cylinders and two vertical, low-pressure ones. One cylinder of each type was placed on each side of the flywheel generator, which with cranks at 135° gave an exceptionally smooth-running compact engine known as the "Manhattan". A further nine similar engines that were superheated and generated three-phase current were supplied in 1902 to the New York Interborough Rapid Transit Company. These were the largest reciprocating steam engines built for use on land, and a few smaller ones with a similar layout were installed in British textile mills.
    [br]
    Further Reading
    Concise Dictionary of American Biography, 1964, New York: C.Scribner's Sons (contains a brief biography).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (provides a brief account of the Manhattan engines) Part of the information for this biography is derived from a typescript in the Smithsonian Institution, Washington, DC: T.H.Fehring, "Technological contributions of Milwaukee's Menomonee Valley industries".
    RLH

    Biographical history of technology > Reynolds, Edwin

  • 9 Corliss, George Henry

    [br]
    b. 2 June 1817 Easton, Washington City, New York, USA
    d. 21 February 1888 USA
    [br]
    American inventor of a cut-off mechanism linked to the governor which revolutionized the operation of steam engines.
    [br]
    Corliss's father was a physician and surgeon. The son was educated at Greenwich, New York, but while he showed an aptitude for mathematics and mechanics he first of all became a storekeeper and then clerk, bookkeeper, salesperson and official measurer and inspector of the cloth produced at W.Mowbray \& Son. He went to the Castleton Academy, Vermont, for three years and at the age of 21 returned to a store of his own in Greenwich. Complaints about stitching in the boots he sold led him to patent a sewing machine. He approached Fairbanks, Bancroft \& Co., Providence, Rhode Island, machine and steam engine builders, about producing his machine, but they agreed to take him on as a draughtsman providing he abandoned it. Corliss moved to Providence with his family and soon revolutionized the design and construction of steam engines. Although he started working out ideas for his engine in 1846 and completed one in 1848 for the Providence Dyeing, Bleaching and Calendering Company, it was not until March 1849 that he obtained a patent. By that time he had joined John Barstow and E.J.Nightingale to form a new company, Corliss Nightingale \& Co., to build his design of steam-engines. He used paired valves, two inlet and two exhaust, placed on opposite sides of the cylinder, which gave good thermal properties in the flow of steam. His wrist-plate operating mechanism gave quick opening and his trip mechanism allowed the governor to regulate the closure of the inlet valve, giving maximum expansion for any load. It has been claimed that Corliss should rank equally with James Watt in the development of the steam-engine. The new company bought land in Providence for a factory which was completed in 1856 when the Corliss Engine Company was incorporated. Corliss directed the business activities as well as technical improvements. He took out further patents modifying his valve gear in 1851, 1852, 1859, 1867, 1875, 1880. The business grew until well over 1,000 workers were employed. The cylindrical oscillating valve normally associated with the Corliss engine did not make its appearance until 1850 and was included in the 1859 patent. The impressive beam engine designed for the 1876 Centennial Exhibition by E. Reynolds was the product of Corliss's works. Corliss also patented gear-cutting machines, boilers, condensing apparatus and a pumping engine for waterworks. While having little interest in politics, he represented North Providence in the General Assembly of Rhode Island between 1868 and 1870.
    [br]
    Further Reading
    Many obituaries appeared in engineering journals at the time of his death. Dictionary of American Biography, 1930, Vol. IV, New York: C.Scribner's Sons. R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (explains Corliss's development of his valve gear).
    J.L.Wood, 1980–1, "The introduction of the Corliss engine to Britain", Transactions of the Newcomen Society 52 (provides an account of the introduction of his valve gear to Britain).
    W.H.Uhland, 1879, Corliss Engines and Allied Steam-motors, London: E. \& F.N.Spon.
    RLH

    Biographical history of technology > Corliss, George Henry

  • 10 Laval, Carl Gustaf Patrik de

    [br]
    b. 9 May 1845 Orsa, Sweden
    d. 2 February 1913 Stockholm, Sweden
    [br]
    Swedish inventor of an advanced cream separator and a steam turbine.
    [br]
    Gustaf de Laval was educated at the Stockholm Technical Institute and Uppsala University. He proved to have an unfailing vigour and variety in his inventive talent, for his interests ranged from electric lighting and electrometallurgy to aerodynamics. In the 1890s he employed over one hundred engineers to develop his inventions, but he was best known for two: the cream separator and a steam turbine. In 1877 he invented the high-speed centrifugal cream separator, which was probably the greatest advance in butter-making up to that time. By 1880 the separators were being successfully marketed all over the world, for they were quickly adopted in larger dairies where they effected enormous savings in labour and space. He followed this with various devices for the dairy industry, including a vacuum milking machine perfected in 1913. In c. 1882, de Laval invented a turbine on the principle of Hero's engine, but he quickly turned his attention to the impulse type, which was like Branca's, with a jet of steam impinging on a set of blades around the periphery of a wheel. He applied for a British patent in 1889. The steam was expanded in a single stage from the initial to the final pressure: to secure economy with the steam issuing at high velocity, the blades also had to rotate at high velocity. An early 5 hp (3.7 kW) turbine rotated at 30,000 rpm, so reduction gearing had to be introduced. Production started in Sweden in 1893 and in other countries at about the same time. In 1892 de Laval proposed employing one of his turbines of 15 hp (11 kW) in an experimental launch, but there is no evidence that it was ever actually installed in a vessel. However, his turbines were popular for powering electric generating sets for lighting textile mills and ships, and by 1900 were available in sizes up to 300 bhp (224 kW).
    [br]
    Bibliography
    1889, British patent no. 7,143 (steam turbine).
    Further Reading
    T.Althin, 1943, Life of de Laval, Stockholm (a full biography).
    T.I.Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C. Black (contains a brief biography).
    R.M.Neilson, 1902, The Steam Turbine, London: Longmans, Green \& Co. (fully covers the development of de Laval's steam turbine).
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (contains a short account of the development of the steam turbine).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (contains a short account).
    RLH

    Biographical history of technology > Laval, Carl Gustaf Patrik de

  • 11 McNaught, William

    [br]
    b. 27 May 1813 Sneddon, Paisley, Scotland
    d. 8 January 1881 Manchester, England
    [br]
    Scottish patentee of a very successful form of compounding beam engine with a high-pressure cylinder between the fulcrum of the beam and the connecting rod.
    [br]
    Although born in Paisley, McNaught was educated in Glasgow where his parents had moved in 1820. He followed in his father's footsteps and became an engineer through an apprenticeship with Robert Napier at the Vulcan Works, Washington Street, Glasgow. He also attended science classes at the Andersonian University in the evenings and showed such competence that at the age of 19 he was offered the position of being in charge of the Fort-Gloster Mills on the Hoogly river in India. He remained there for four years until 1836, when he returned to Scotland because the climate was affecting his health.
    His father had added the revolving cylinder to the steam engine indicator, and this greatly simplified and extended its use. In 1838 William joined him in the business of manufacturing these indicators at Robertson Street, Glasgow. While advising textile manufacturers on the use of the indicator, he realized the need for more powerful, smoother-running and economical steam engines. He provided the answer by placing a high-pressure cylinder midway between the fulcrum of the beam and the connecting rod on an ordinary beam engine. The original cylinder was retained to act as the low-pressure cylinder of what became a compound engine. This layout not only reduced the pressures on the bearing surfaces and gave a smoother-running engine, which was one of McNaught's aims, but he probably did not anticipate just how much more economical his engines would be; they often gave a saving of fuel up to 40 per cent. This was because the steam pipe connecting the two cylinders acted as a receiver, something lacking in the Woolf compound, which enabled the steam to be expanded properly in both cylinders. McNaught took out his patent in 1845, and in 1849 he had to move to Manchester because his orders in Lancashire were so numerous and the scope was much greater there than in Glasgow. He took out further patents for equalizing the stress on the working parts, but none was as important as his original one, which was claimed to have been one of the greatest improvements since the steam engine left the hands of James Watt. He was one of the original promoters of the Boiler Insurance and Steam Power Company and was elected Chairman in 1865, a position he retained until a short time before his death.
    [br]
    Bibliography
    1845, British patent no. 11,001 (compounding beam engine).
    Further Reading
    Obituary, Engineer 51.
    Obituary, Engineering 31.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (the fullest account of McNaught's proposals for compounding).
    RLH

    Biographical history of technology > McNaught, William

  • 12 Wasborough, Matthew

    [br]
    b. 1753 Bristol, England
    d. 21 October 1781 Bristol, England
    [br]
    English patentee of an application of the flywheel to create a rotative steam engine.
    [br]
    A single-cylinder atmospheric steam engine had a power stroke only when the piston descended the cylinder: a means had to be found of returning the piston to its starting position. For rotative engines, this was partially solved by the patent of Matthew Wasborough in 1779. His father was a partner in a Bristol brass-founding and clockmaking business in Narrow Wine Street where he was joined by his son. Wasborough proposed to use some form of ratchet gear to effect the rotary motion and added a flywheel, the first time one was used in a steam engine, "in order to render the motion more regular and uniform". He installed one engine to drive the lathes in the Bristol works and another at James Pickard's flour mill at Snow Hill, Birmingham, where Pickard applied his recently patented crank to it. It was this Wasborough-Pickard engine which posed a threat to Boulton \& Watt trying to develop a rotative engine, for Wasborough built several engines for cornmills in Bristol, woollen mills in Gloucestershire and a block factory at Southampton before his early death. Matthew Boulton was told that Wasborough was "so intent upon the study of engines as to bring a fever on his brain and he dyed in consequence thereof…. How dangerous it is for a man to wade out of his depth" (Jenkins 1936:106).
    [br]
    Bibliography
    1779, British patent no. 1,213 (rotative engine with flywheel).
    Further Reading
    J.Tann, 1978–9, "Makers of improved Newcomen engines in the late 18th century, and R.A.Buchanan", 1978–9, "Steam and the engineering community in the eighteenth century", Transactions of the Newcomen Society 50 ("Thomas Newcomen. A commemorative symposium") (both papers discuss Wasborough's engines).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (examines his patent).
    R.Jenkins (ed.), 1936, Collected Papers, 106 (for Matthew Boulton's letter of 30 October 1781).
    RLH

    Biographical history of technology > Wasborough, Matthew

  • 13 Allen, John F.

    [br]
    b. 1829 England
    d. 2 October 1900 New York (?), USA
    [br]
    English inventor of the Allen valve used on his pioneering high-speed engines.
    [br]
    Allen was taken to the United States from England when he was 12 years old. He became an engineer on the Curlew, a freight boat running between New York and Providence. A defect which caused the engine to race in rough weather led Allen to invent a new valve gear, but he found it could not be fitted to the Corliss engine. In 1856 he patented an improved form of valve and operating gear to reduce back-pressure in the cylinder, which was in fact the reverse of what happened in his later engines. In 1860 he repaired the engines of a New York felt-hat manufacturer, Henry Burr, and that winter he was introduced to Charles Porter. Porter realized the potential of Allen's valves for his idea of a high-speed engine, and the Porter-Allen engine became the pioneer of high-speed designs.
    Porter persuaded Allen to patent his new valves and two patents were obtained in 1862. These valves could be driven positively and yet the travel of the inlet could be varied to give the maximum expansion at different cut-offs. Also, the valves allowed an exceptionally good flow of steam. While Porter went to England and tried to interest manufacturers there, Allen remained in America and continued work on the engine. Within a few years he invented an inclined watertube boiler, but he seemed incapable of furthering his inventions once they had been placed on the market. Although he mortgaged his own house in order to help finance the factory for building the steam engine, in the early 1870s he left Porter and built a workshop of his own at Mott Haven. There he invented important systems for riveting by pneumatic machines through both percussion and pressure which led into the production of air compressors and riveting machines.
    [br]
    Further Reading
    Obituaries appeared in engineering journals at the time of his death.
    Dictionary of American Biography, 1928, Vol. I, New York: C.Scribner's Sons. C.T.Porter, 1908, Engineering Reminiscences, New York: J.Wiley \& Sons, reprint 1985, Bradley, Ill.: Lindsay Publications (provides details of Allen's valve design).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (covers the development of the Porter-Allen engine).
    RLH

    Biographical history of technology > Allen, John F.

  • 14 Pickard, James

    [br]
    fl. c. 1780 Birmingham, England
    [br]
    English patentee of the application of the crank to steam engines.
    [br]
    James Pickard, the Birmingham button maker, also owned a flour mill at Snow Hill, in 1780, where Matthew Wasborough installed one of his rotative engines with ratchet gear and a flywheel. In August 1780, Pickard obtained a patent (no. 1263) for an application to make a rotative engine with a crank as well as gearwheels, one of which was weighted to help return the piston in the atmospheric cylinder during the dead stroke and overcome the dead centres of the crank. Wasborough's flywheel made the counterweight unnecessary, and engines were built with this and Pickard's crank. Several Birmingham business people seem to have been involved in the patent, and William Chapman of Newcastle upon Tyne was assigned the sole rights of erecting engines on the Wasborough-Pickard system in the counties of Northumberland, Durham and York. Wasborough was building engines in the south until his death the following year. The patentees tried to bargain with Boulton \& Watt to exchange the use of the crank for that of the separate condenser, but Boulton \& Watt would not agree, probably because James Watt claimed that one of his workers had stolen the idea of the crank and divulged it to Pickard. To avoid infringing Pickard's patent, Watt patented his sun-and-planet motion for his rotative engines.
    [br]
    Bibliography
    August 1780, British patent no. 1,263 (rotative engine with crank and gearwheels).
    Further Reading
    J.Farey, 1827, A Treatise on the Steam Engine, Historical, Practical and Descriptive, reprinted 1971, Newton Abbot: David \& Charles (contains an account of Pickard's crank). R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (provides an account of Pickard's crank).
    R.A.Buchanan, 1978–9, "Steam and the engineering community in the eighteenth century", Transactions of the Newcomen Society 50 ("Thomas Newcomen. A commemorative symposium") (provides details about the development of his engine).
    RLH

    Biographical history of technology > Pickard, James

  • 15 Trevithick, Richard

    [br]
    b. 13 April 1771 Illogan, Cornwall, England
    d. 22 April 1833 Dartford, Kent, England
    [br]
    English engineer, pioneer of non-condensing steam-engines; designed and built the first locomotives.
    [br]
    Trevithick's father was a tin-mine manager, and Trevithick himself, after limited formal education, developed his immense engineering talent among local mining machinery and steam-engines and found employment as a mining engineer. Tall, strong and high-spirited, he was the eternal optimist.
    About 1797 it occurred to him that the separate condenser patent of James Watt could be avoided by employing "strong steam", that is steam at pressures substantially greater than atmospheric, to drive steam-engines: after use, steam could be exhausted to the atmosphere and the condenser eliminated. His first winding engine on this principle came into use in 1799, and subsequently such engines were widely used. To produce high-pressure steam, a stronger boiler was needed than the boilers then in use, in which the pressure vessel was mounted upon masonry above the fire: Trevithick designed the cylindrical boiler, with furnace tube within, from which the Cornish and later the Lancashire boilers evolved.
    Simultaneously he realized that high-pressure steam enabled a compact steam-engine/boiler unit to be built: typically, the Trevithick engine comprised a cylindrical boiler with return firetube, and a cylinder recessed into the boiler. No beam intervened between connecting rod and crank. A master patent was taken out.
    Such an engine was well suited to driving vehicles. Trevithick built his first steam-carriage in 1801, but after a few days' use it overturned on a rough Cornish road and was damaged beyond repair by fire. Nevertheless, it had been the first self-propelled vehicle successfully to carry passengers. His second steam-carriage was driven about the streets of London in 1803, even more successfully; however, it aroused no commercial interest. Meanwhile the Coalbrookdale Company had started to build a locomotive incorporating a Trevithick engine for its tramroads, though little is known of the outcome; however, Samuel Homfray's ironworks at Penydarren, South Wales, was already building engines to Trevithick's design, and in 1804 Trevithick built one there as a locomotive for the Penydarren Tramroad. In this, and in the London steam-carriage, exhaust steam was turned up the chimney to draw the fire. On 21 February the locomotive hauled five wagons with 10 tons of iron and seventy men for 9 miles (14 km): it was the first successful railway locomotive.
    Again, there was no commercial interest, although Trevithick now had nearly fifty stationary engines completed or being built to his design under licence. He experimented with one to power a barge on the Severn and used one to power a dredger on the Thames. He became Engineer to a project to drive a tunnel beneath the Thames at Rotherhithe and was only narrowly defeated, by quicksands. Trevithick then set up, in 1808, a circular tramroad track in London and upon it demonstrated to the admission-fee-paying public the locomotive Catch me who can, built to his design by John Hazledine and J.U. Rastrick.
    In 1809, by which date Trevithick had sold all his interest in the steam-engine patent, he and Robert Dickinson, in partnership, obtained a patent for iron tanks to hold liquid cargo in ships, replacing the wooden casks then used, and started to manufacture them. In 1810, however, he was taken seriously ill with typhus for six months and had to return to Cornwall, and early in 1811 the partners were bankrupt; Trevithick was discharged from bankruptcy only in 1814.
    In the meantime he continued as a steam engineer and produced a single-acting steam engine in which the cut-off could be varied to work the engine expansively by way of a three-way cock actuated by a cam. Then, in 1813, Trevithick was approached by a representative of a company set up to drain the rich but flooded silver-mines at Cerro de Pasco, Peru, at an altitude of 14,000 ft (4,300 m). Low-pressure steam engines, dependent largely upon atmospheric pressure, would not work at such an altitude, but Trevithick's high-pressure engines would. Nine engines and much other mining plant were built by Hazledine and Rastrick and despatched to Peru in 1814, and Trevithick himself followed two years later. However, the war of independence was taking place in Peru, then a Spanish colony, and no sooner had Trevithick, after immense difficulties, put everything in order at the mines then rebels arrived and broke up the machinery, for they saw the mines as a source of supply for the Spanish forces. It was only after innumerable further adventures, during which he encountered and was assisted financially by Robert Stephenson, that Trevithick eventually arrived home in Cornwall in 1827, penniless.
    He petitioned Parliament for a grant in recognition of his improvements to steam-engines and boilers, without success. He was as inventive as ever though: he proposed a hydraulic power transmission system; he was consulted over steam engines for land drainage in Holland; and he suggested a 1,000 ft (305 m) high tower of gilded cast iron to commemorate the Reform Act of 1832. While working on steam propulsion of ships in 1833, he caught pneumonia, from which he died.
    [br]
    Bibliography
    Trevithick took out fourteen patents, solely or in partnership, of which the most important are: 1802, Construction of Steam Engines, British patent no. 2,599. 1808, Stowing Ships' Cargoes, British patent no. 3,172.
    Further Reading
    H.W.Dickinson and A.Titley, 1934, Richard Trevithick. The Engineer and the Man, Cambridge; F.Trevithick, 1872, Life of Richard Trevithick, London (these two are the principal biographies).
    E.A.Forward, 1952, "Links in the history of the locomotive", The Engineer (22 February), 226 (considers the case for the Coalbrookdale locomotive of 1802).
    PJGR

    Biographical history of technology > Trevithick, Richard

См. также в других словарях:

  • Stationary steam engine — A stationary steam engine, preserved at Tower Bridge in London. This is one of two tandem cross compound hydraulic pumping engines formerly used to raise and lower the bridge. Stationary steam engines are fixed steam engines used for pumping or… …   Wikipedia

  • History of the internal combustion engine — Various scientists and engineers contributed to the development of internal combustion engines: [ Otto engines running at the Western Minnesota Steam Threshers Reunion (WMSTR), in Rollag, Minnesota. (2min 16sec, 320x240, 340kbps video)] *1206: Al …   Wikipedia

  • Steam engine — A steam engine is a heat engine that performs mechanical work using steam as its working fluid. [ [http://www.britannica.com/EBchecked/topic/564472/steam engine steam engine Britannica Online Encyclopedia ] ] Steam engines have a long history,… …   Wikipedia

  • History of the steam engine — This article primarily deals with the history of the reciprocating type steam engine. The parallel development of turbine type engines is described in the steam turbine article. The history of the steam engine stretches back as far as the first… …   Wikipedia

  • History of the Royal Australian Navy — The History of the Royal Australian Navy can be traced back to 1788 and the colonisation of Australia by the British. During the period until 1859, vessels of the Royal Navy made frequent trips to the new colonies. In 1859, the Australia Squadron …   Wikipedia

  • Antique Gas and Steam Engine Museum — The Antique Gas Steam Engine Museum (AGSEM) is a living history museum founded in 1969 located on 55 acres of county owned land on the outskirts of Vista, California. The Museum is open almost every day of the year, and has two bi annual shows on …   Wikipedia

  • Corliss steam engine — A Corliss steam engine – the valve gear is on the right of the cylinder block, on the left of the picture A Corliss steam engine (or Corliss engine) is a steam engine, fitted with rotary valves and with variable valve timing patented in 1849 …   Wikipedia

  • Newcomen steam engine — Animation of a schematic Newcomen steam engine. – Steam is shown pink and water is blue. – Valves move from open (green) to closed (red) The atmospheric engine invented by Thomas Newcomen in 1712, today referred to as a Newcomen steam engine (or… …   Wikipedia

  • Corliss Steam Engine (Pawnee, Oklahoma) — Corliss Steam Engine U.S. National Register of Historic Places …   Wikipedia

  • Model steam engine — Stationary model steam engine by Märklin, 1915 …   Wikipedia

  • Steam power during the Industrial Revolution — See also the section on steam power in the main Industrial Revolution article During the Industrial Revolution, steam power replaced water power and muscle power (which often came from horses) as the primary source of power in use in industry.… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»